Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death.

نویسندگان

  • Tiina M Kauppinen
  • Raymond A Swanson
چکیده

Activated microglia contribute to cell death in ischemic and neurodegenerative disorders of the CNS. Microglial activation is regulated in part by NF-kappaB, and the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) enhances NF-kappaB binding to DNA. In this study, the role of PARP-1 in microglia-mediated neurotoxicity was assessed using microglia from wild-type (wt) and PARP-1-/- mice. Cultured microglia were incubated with TNF-alpha, a cytokine that is up-regulated in many neurological disorders. When stimulated with TNF-alpha, wt microglia proliferated, underwent morphological changes characteristic of activation, and killed neurons placed in coculture. The effects of TNF-alpha were markedly attenuated both in PARP-1-/- microglia and in wt microglia treated with the PARP enzymatic inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2h)-isoquinolinone. These effects were also blocked by (E)-3-(4-methylphenylsulfonyl)-2-propenenenitrile, which inhibits translocation of NF-kappaB to the nucleus. TNF-alpha also up-regulated microglial release of matrix metalloproteinase-9 (MMP-9), an enzyme with potential neurotoxic properties that is transcriptionally regulated by NF-kappaB. This up-regulation was blocked in PARP-1-/- microglia and in wt microglia by the PARP inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2h)-isoquinolinone. Microglia from MMP-9-/- mice were used to evaluate the contribution of MMP-9 to microglial neurotoxicity. MMP-9-/- microglia treated with TNF-alpha showed substantially reduced neurotoxicity relative to the wt microglia. TNF-alpha-stimulated wt microglia treated with the MMP inhibitor ilomastat also showed reduced neurotoxicity. These findings suggest that PARP-1 activation is required for both TNF-alpha-induced microglial activation and the neurotoxicity resulting from TNF-alpha-induced MMP-9 release.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MUTYH promotes oxidative microglial activation and inherited retinal degeneration.

Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog-mediated (MUYTH-med...

متن کامل

NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death.

Poly(ADP-ribose)-1 (PARP-1) is a key mediator of cell death in excitotoxicity, ischemia, and oxidative stress. PARP-1 activation leads to cytosolic NAD(+) depletion and mitochondrial release of apoptosis-inducing factor (AIF), but the causal relationships between these two events have been difficult to resolve. Here, we examined this issue by using extracellular NAD(+) to restore neuronal NAD(+...

متن کامل

A New Neolignan Derivative, Balanophonin Isolated from Firmiana simplex Delays the Progress of Neuronal Cell Death by Inhibiting Microglial Activation

Excessive activation of microglia causes the continuous production of neurotoxic mediators, which further causes neuron degeneration. Therefore, inhibition of microglial activation is a possible target for the treatment of neurodegenerative disorders. Balanophonin, a natural neolignoid from Firmiana simplex, has been reported to have anti-inflammatory and anti-cancer effects. In this study, we ...

متن کامل

Hypoglycemic neuronal death and cognitive impairment are prevented by poly(ADP-ribose) polymerase inhibitors administered after hypoglycemia.

Severe hypoglycemia causes neuronal death and cognitive impairment. Evidence suggests that hypoglycemic neuronal death involves excitotoxicity and DNA damage. Poly(ADP-ribose) polymerase-1 (PARP-1) normally functions in DNA repair, but promotes cell death when extensively activated by DNA damage. Cortical neuron cultures were subjected to glucose deprivation to assess the role of PARP-1 in hypo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 174 4  شماره 

صفحات  -

تاریخ انتشار 2005